Перевод: со всех языков на английский

с английского на все языки

The work of these pioneers

  • 1 закладывать основу

    The book lays the groundwork for the important area of solid state physics and...

    He laid the groundwork (or foundation) for the discipline of ethology.

    * * *
    Закладывать основу (метаболизма)-- The reactions included in carbohydrate metabolism provide the basic framework of metabolic machinery. Закладывать основу -- to lay (down) the foundation (for), to lay the groundwork (for), to provide the basic framework (of)
     The foundations for a systematic and coherent body of knowledge were laid in the years 1880 to 1930 by the efforts of scientists and engineers in a number of countries.
     The foundations for these developments were laid down in the early 1960s.

    Русско-английский научно-технический словарь переводчика > закладывать основу

  • 2 закладывать основу

    The book lays the groundwork for the important area of solid state physics and...

    He laid the groundwork (or foundation) for the discipline of ethology.

    Русско-английский научно-технический словарь переводчика > закладывать основу

  • 3 Stumpf, Johann

    [br]
    fl. c. 1900 Germany
    [br]
    German inventor of a successful design of uniflow steam engine.
    [br]
    In 1869 Stumpf was commissioned by the Pope Manufacturing Company of Hertford, Connecticut, to set up two triple-expansion, vertical, Corliss pumping engines. He tried to simplify this complicated system and started research with the internal combustion engine and the steam turbine particularly as his models. The construction of steam turbines in several stages where the steam passed through in a unidirectional flow was being pursued at that time, and Stumpf wondered whether it would be possible to raise the efficiency of a reciprocating steam engine to the same thermal level as the turbine by the use of the uniflow principle.
    Stumpf began to investigate these principles without studying the work of earlier pioneers like L.J. Todd, which he later thought would have led him astray. It was not until 1908, when he was Professor at the Institute of Technology in Berlin- Charlottenburg, that he patented his successful "una-flow" steam engine. In that year he took out six British patents for improvements in details on his original one Stumpf fully realized the thermal advantages of compressing the residual steam and was able to evolve systems of coping with excessive compression when starting. He also placed steam-jackets around the ends of the cylinder. Stumpf's first engine was built in 1908 by the Erste B runner Maschinenfabrik-Gesellschaft, and licences were taken out by many other manufacturers, including those in Britain and the USA. His engine was developed into the most economical type of reciprocating steam engine.
    [br]
    Bibliography
    1912, The Una-Flow Steam Engine, Munich: R. Oldenbourg (his own account of the una-flow engine).
    Further Reading
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press; R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (both discuss Stumpf's engine).
    H.J.Braun, "The National Association of German-American Technologists and technology transfer between Germany and the United States, 1844–1930", History of Technology 8 (provides details of Stumpf's earlier work).
    RLH

    Biographical history of technology > Stumpf, Johann

  • 4 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

  • 5 Lilienthal, Otto

    SUBJECT AREA: Aerospace
    [br]
    b. 23 May 1848 Anklam, Prussia (now Germany)
    d. 10 August 1896 Berlin, Germany
    [br]
    German glider pioneer, the first to make a controlled flight using wings.
    [br]
    Otto Lilienthal and his brother Gustav developed an interest in flying as boys, when they studied birds in flight, built models and even tried to fit wings to their arms. Gustav went on to become a successful architect while Otto, after a brilliant scholastic career, became a mechanical engineer. Otto was able to devote his spare time to the problems of flight, and Gustav helped when his work allowed. They considered manpowered and mechanically powered projects, but neither looked hopeful so they turned to gliding. Otto published his research work in a book, Bird Flight as a Basis for Aviation. By 1889 Otto Lilienthal was ready to test his first full-size gliders. No. 1 and No. 2 were not successful, but No. 3, built in 1891, showed promise. He gradually improved his designs and his launching sites as he gained experience. To take off he ran downhill carrying his hang-glider until it became airborne, then he controlled it by swinging his body weight in the appropriate direction. He even built an artificial mound near Berlin so that he could take off into the wind whichever way it was blowing.
    In all, Lilienthal built some eighteen gliders with various wing shapes, including biplanes. By 1895 he was planning movable control surfaces (operated by head movement) and a powered version using a carbonic acid gas motor. Unfortunately, Lilienthal crashed and died of his injuries before these ideas could be tested. In all, he made over two thousand flights covering distances up to 300 m (300 yds. Many of these flights were recorded on photographs and so generated an interest in flying. Lilienthal's achievements also encouraged other pioneers, such as Percy Pilcher in Britain, and Octave Chanute and the Wright brothers in the United States.
    [br]
    Bibliography
    1899, Der Vogelflug als Grundlage der Fliegekunst, Berlin, reprinted c. 1977; repub. in English, 1911, as Bird Flight as a Basis for Aviation.
    Further Reading
    Charles H.Gibbs-Smith, 1985, Aviation, London (provides a detailed account of Lilienthal's gliders).
    P.H.Lilienthal, 1978, "Die Lilienthal Gebrüder", Aerospace (Royal Aeronautical Society) (January) (for more personal information).
    "The Lilienthal and Pilcher gliders compared", Flight (1 January 1910 and 8 January 1910) (for details about and plans of a typical Lilienthal glider).
    JDS

    Biographical history of technology > Lilienthal, Otto

  • 6 Brinell, Johann August

    SUBJECT AREA: Metallurgy
    [br]
    b. 1849 Småland, Sweden
    d. 17 November 1925 Stockholm, Sweden
    [br]
    Swedish metallurgist, inventor of the well-known method of hardness measurement which uses a steel-ball indenter.
    [br]
    Brinell graduated as an engineer from Boräs Technical School, and his interest in metallurgy began to develop in 1875 when he became an engineer at the ironworks of Lesjöfors and came under the influence of Gustaf Ekman. In 1882 he was appointed Chief Engineer at the Fagersta Ironworks, where he became one of Sweden's leading experts in the manufacture and heat treatment of tool steels.
    His reputation in this field was established in 1885 when he published a paper on the structural changes which occurred in steels when they were heated and cooled, and he was among the first to recognize and define the critical points of steel and their importance in heat treatment. Some of these preliminary findings were first exhibited at Stockholm in 1897. His exhibit at the World Exhibition at Paris in 1900 was far more detailed and there he displayed for the first time his method of hardness determination using a steel-ball indenter. For these contributions he was awarded the French Grand Prix and also the Polhem Prize of the Swedish Technical Society.
    He was later concerned with evaluating and developing the iron-ore deposits of north Sweden and was one of the pioneers of the electric blast-furnace. In 1903 he became Chief Engineer of the Jernkontoret and remained there until 1914. In this capacity and as Editor of the Jernkontorets Annaler he made significant contributions to Swedish metallurgy. His pioneer work on abrasion resistance, undertaken long before the term tribology had been invented, gained him the Rinman Medal, awarded by the Jernkontoret in 1920.
    [br]
    Principal Honours and Distinctions
    Member of the Swedish Academy of Science 1902. Dr Honoris Causa, University of Upsala 1907. French Grand Prix, Paris World Exhibition 1900; Swedish Technical Society Polhem Prize 1900; Iron and Steel Institute Bessemer Medal 1907; Jernkontorets Rinman Medal 1920.
    Further Reading
    Axel Wahlberg, 1901, Journal of the Iron and Steel Institute 59:243 (the first English-language description of the Brinell Hardness Test).
    Machinery's Encyclopedia, 1917, Vol. III, New York: Industrial Press, pp. 527–40 (a very readable account of the Brinell test in relation to the other hardness tests available at the beginning of the twentieth century).
    Hardness Test Research Committee, 1916, Bibliography on hardness testing, Proceedings of the Institution of Mechanical Engineers.
    ASD

    Biographical history of technology > Brinell, Johann August

См. также в других словарях:

  • The Benedictine Order —     The Benedictine Order     † Catholic Encyclopedia ► The Benedictine Order     The Benedictine Order comprises monks living under the Rule of St. Benedict, and commonly known as black monks . The order will be considered in this article under… …   Catholic encyclopedia

  • The Irish (in Countries Other Than Ireland) —     The Irish (in countries other than Ireland)     † Catholic Encyclopedia ► The Irish (in countries other than Ireland)     I. IN THE UNITED STATES     Who were the first Irish to land on the American continent and the time of their arrival are …   Catholic encyclopedia

  • Pioneers! O Pioneers! — is a poem by the American poet Walt Whitman. It was first published in Leaves of Grass in 1865. The motto of Carleton University Ours the Task Eternal is taken from the fourth stanza of this work. Full poemPioneers! O Pioneers!:COME my tan faced… …   Wikipedia

  • The Counter-Reformation —     The Counter Reformation     † Catholic Encyclopedia ► The Counter Reformation     The subject will be considered under the following heads:     I. Significance of the term II. Low ebb of Catholic fortunes III. St. Ignatius and the Jesuits,… …   Catholic encyclopedia

  • The United States of America —     The United States of America     † Catholic Encyclopedia ► The United States of America     BOUNDARIES AND AREA     On the east the boundary is formed by the St. Croix River and an arbitrary line to the St. John, and on the north by the… …   Catholic encyclopedia

  • The Church of Jesus Christ of Latter-day Saints — Classification Latter Day Saint movement Theology Nontrinitarian, Mormonism Governance …   Wikipedia

  • The Religion of Russia —     The Religion of Russia     † Catholic Encyclopedia ► The Religion of Russia     A. The Origin of Russian Christianity     There are two theories in regard to the early Christianity of Russia; according to one of them, Russia was Catholic from …   Catholic encyclopedia

  • The Moody Blues — in concert at the Chumash Casino Resort in Santa Ynez, California in 2005. L R: Justin Hayward, Graeme Edge and John Lodge. Background information Origin …   Wikipedia

  • The Chemical Brothers — performing live. Ed Simons (left) and Tom Rowlands (right) Background information Also known as The 237 Turbo Nutters, The Dust Brothers, Chemical Ed …   Wikipedia

  • The Church of Jesus Christ of Latter-day Saints in Michigan — The Detroit Michigan Temple Members of The Church of Jesus Christ of Latter day Saints arrived in Michigan in the 1830s. It did not have an organized presence in the state from the late 1850s into the 1870s. However missionary work was reopened… …   Wikipedia

  • The Office (U.S. TV series) — The Office Genre Sitcom Mockumentary Created by Ricky Gervais Stephen Merchant …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»